An online clean technology database

Developing a Vehicle for Solar Water Heating Mass Implementation in South Africa

Solar thermal for hot water for domestic and industrial use

© Climate Tech Wiki - acc and respective owners

Solar thermal technology can be used to provide hot water for domestic or industrial uses. Recently, ‘combi’ systems have been introduced which can provide both space and water heating. Advances in the technology have provided so-called solar assisted air conditioning. The systems can be tailored to different needs and circumstances, such as industrial applications and domestic use.

Clean Development Mechanism market status: 

[this information is kindly provided by the UNEP Risoe Centre Carbon Markets Group]

Project developers of solar thermal energy projects in the CDM pipeline mainly apply the following methodologies:

ACM2 “Consolidated baseline methodology for grid-connected electricity generation from renewable sources”
AMS- I.C. “Thermal energy production with or without electricity”
Further information on these metholodogies can be found here.

As of 1 February 2010, there are 10 solar thermal projects in the CDM pipeline - 5 are registered and 5 are at the validation stage. [media:image:3]

Example CDM project:
Title: Federal Intertrade Pengyang Solar Cooker Project (CDM Ref. No. 2307)
The Federal Intertrade Pengyang Solar Cooker Project is located on the dry land of southern Ningxia in northwestern China. Implemented by Ningxia Federal Intertrade Co., the proposed project will install 17,000 solar cookers for the poor rural residents in mountainous areas with a rural population of 92,331 (or 20,341 households). The project will cover 83.6% of the households in the project region. The rating power of each solar cooker is 773.5 W and the total capacity of the proposed project is 13.1 MW. The proposed project will enable the rural residents to efficiently substitute solar energy for the fossil fuel (coal) used in daily cooking and water boiling - avoiding CO2 emission that would be generated by fossil fuel consumption.
Project investment: USD 900,000 million
Project CO2 reduction over a crediting period of 10 years: 357,230 tCO2e
Expected CER revenue (USD 10/CER): USD 3,572,300



Solar Cooling and Hybrid Systems with Heating and Hot Water

© Climate Tech Wiki - acc and respective owners

Solar cooling technologies transform solar radiation to provide space cooling and refrigeration services. Air conditioning in buildings has traditionally been provided by air conditioners using electrically driven vapour compression chillers. These are responsible not only for GHG emissions, but also use CFCs and HCFCs and related compounds as refrigerant fluids, which also contribute to climate change and are known to deplete the ozone layer.

Clean Development Mechanism market status: 

[this information is kindly provided by the UNEP Risoe Centre Carbon Markets Group]

Project developers of solar thermal energy projects in the CDM pipeline mainly apply the following methodologies:

ACM2 “Consolidated baseline methodology for grid-connected electricity generation from renewable sources”
AMS- I.C. “Thermal energy production with or without electricity”
Further information on these metholodogies can be found here.

As of 1 February 2010, there are 10 solar thermal projects in the CDM pipeline - 5 areregistered and 5 are at the validation stage. [media:image:7]

Example CDM project:
Title: Federal Intertrade Pengyang Solar Cooker Project (CDM Ref. No. 2307)
The Federal Intertrade Pengyang Solar Cooker Project is located on the dry land of southern Ningxia in northwestern China. Implemented by Ningxia Federal Intertrade Co., the proposed project will install 17,000 solar cookers for the poor rural residents in mountainous areas with a rural population of 92,331 (or 20,341 households). The project will cover 83.6% of the households in the project region. The rating power of each solar cooker is 773.5 W and the total capacity of the proposed project is 13.1 MW. The proposed project will enable the rural residents to efficiently substitute solar energy for the fossil fuel (coal) used in daily cooking and water boiling - avoiding CO2 emission that would be generated by fossil fuel consumption.
Project investment: USD 900,000 million
Project CO2 reduction over a crediting period of 10 years: 357,230 tCO2e
Expected CER revenue (USD 10/CER): USD 3,572,300



To assist at least three cities in developing vehicles for the mass rollout of solar water heaters and make cities aware of all renewable and energy efficiency alternatives available to them.

Location

South Africa
25° 42' 24.84" S, 28° 13' 45.84" E
Main activity and output: 
  • Choose three leading cities in South Africa to partner;
  • Finalise choice of model on which the fee-for-service or other mass delivery mechanism will be based;
  • Identify the key role players in the model (financiers, CDM funding co-ordinators, solar water heater suppliers and installers, local authorities, legal experts);
  • Provide technical, legal and financial inputs to cities as necessary in the process of delivery vehicle establishment;
  • Facilitate and co-ordinate the process of delivery vehicle establishment, bringing in identified players as needed;
  • Extend the current manual for renewable energy and energy efficiency options (developed under a past REEEP project) to cover all feasible options, and maintain and extend the existing city support website for a fully comprehensive overview.
Expected impact: 
  • Set the process in place for the establishment of vehicles for, and implementation of, SWHs on a mass scale in three cities, leading to similar rollout in other cities;
  • Improved energy security for cities due to peak load reduction, as well as financial benefits due to reduced peak power needs;
  • Reduce global warming emissions in cities;
  • Create jobs through the resulting boost to the SWH industry;
  • Inform decisions regarding the mix of renewable energy options to be adopted in cities to meet renewable energy targets;
  • Increase ability to implement a range of renewable energy and energy efficiency projects.